Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Open Biol ; 12(8): 220058, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35975649

RESUMO

Cyclic guanosine monophosphate (cGMP) signalling plays a fundamental role in many cell types, including platelets. cGMP has been implicated in platelet formation, but mechanistic detail about its spatio-temporal regulation in megakaryocytes (MKs) is lacking. Optogenetics is a technique which allows spatio-temporal manipulation of molecular events in living cells or organisms. We took advantage of this method and expressed a photo-activated guanylyl cyclase, Blastocladiella emersonii Cyclase opsin (BeCyclop), after viral-mediated gene transfer in bone marrow (BM)-derived MKs to precisely light-modulate cGMP levels. BeCyclop-MKs showed a significantly increased cGMP concentration after illumination, which was strongly dependent on phosphodiesterase (PDE) 5 activity. This finding was corroborated by real-time imaging of cGMP signals which revealed that pharmacological PDE5 inhibition also potentiated nitric oxide-triggered cGMP generation in BM MKs. In summary, we established for the first-time optogenetics in primary MKs and show that PDE5 is the predominant PDE regulating cGMP levels in MKs. These findings also demonstrate that optogenetics allows for the precise manipulation of MK biology.


Assuntos
Guanosina Monofosfato , Megacariócitos , Blastocladiella , GMP Cíclico/metabolismo , Megacariócitos/metabolismo , Óxido Nítrico/metabolismo , Optogenética , Diester Fosfórico Hidrolases
2.
Curr Biol ; 32(14): 3146-3153.e3, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35675809

RESUMO

Diverse light-sensing organs (i.e., eyes) have evolved across animals. Interestingly, several subcellular analogs have been found in eukaryotic microbes.1 All of these systems have a common "recipe": a light occluding or refractory surface juxtaposed to a membrane-layer enriched in type I rhodopsins.1-4 In the fungi, several lineages have been shown to detect light using a diversity of non-homologous photo-responsive proteins.5-7 However, these systems are not associated with an eyespot-like organelle with one exception found in the zoosporic fungus Blastocladiella emersonii (Be).8Be possesses both elements of this recipe: an eyespot composed of lipid-filled structures (often called the side-body complex [SBC]), co-localized with a membrane enriched with a gene-fusion protein composed of a type I (microbial) rhodopsin and guanylyl cyclase enzyme domain (CyclOp-fusion protein).8,9 Here, we identify homologous pathway components in four Chytridiomycota orders (Chytridiales, Synchytriales, Rhizophydiales, and Monoblepharidiales). To further explore the architecture of the fungal zoospore and its lipid organelles, we reviewed electron microscopy data (e.g., the works of Barr and Hartmann10 and Reichle and Fuller11) and performed fluorescence-microscopy imaging of four CyclOp-carrying zoosporic fungal species, showing the presence of a variety of candidate eyespot-cytoskeletal ultrastructure systems. We then assessed the presence of canonical photoreceptors across the fungi and inferred that the last common fungal ancestor was able to sense light across a range of wavelengths using a variety of systems, including blue-green-light detection. Our data imply, independently of how the fungal tree of life is rooted, that the apparatus for a CyclOp-organelle light perception system was an ancestral feature of the fungi.


Assuntos
Blastocladiella , Quitridiomicetos , Animais , Blastocladiella/metabolismo , Fungos/genética , Fungos/metabolismo , Guanilato Ciclase/metabolismo , Lipídeos , Minociclina , Rodopsina/metabolismo
3.
Fungal Biol ; 124(5): 468-474, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32389309

RESUMO

Blastocladiella emersonii is an aquatic fungus of the phylum Blastocladiomycota, localized near the base of the fungal tree. Previous studies have shown that B. emersonii responds to heat shock and cadmium exposure inducing the transcription of a high number of genes. EST sequencing from heat shocked and cadmium exposed B. emersonii cells has shown that exposure to cadmium causes strong splicing inhibition. Despite the knowledge about splicing inhibition by cadmium, it is still unclear if other metal contaminants can cause the same response. In the present study, we have demonstrated that the effect of cadmium exposure on splicing inhibition is much stronger than that of other divalent metals such as cobalt and manganese. Data presented here also indicate that intron retention occurs randomly among the fungal transcripts, as verified by analyzing differently affected transcripts. In addition, we identified in the genome of B. emersonii the genes encoding the snRNA splicing components U1, U2, U4, U5 and U6 and observed that spliceosome snRNAs are upregulated in the presence of metals, in particular snRNA U1 in cells under cadmium exposure. This observation suggests that snRNA upregulation might be a defense of the fungal cell against the metal stress condition.


Assuntos
Blastocladiella , Metais Pesados , Spliceossomos , Blastocladiella/efeitos dos fármacos , Cádmio/toxicidade , Cobalto/toxicidade , Manganês/toxicidade , Metais Pesados/toxicidade , Spliceossomos/efeitos dos fármacos
4.
Fungal Biol ; 124(5): 482-489, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32389311

RESUMO

Small heat shock proteins (sHsps) are molecular chaperones of low molecular weight involved in an early association with misfolded proteins. In response to heat shock, B. emersonii induces the synthesis of a number of proteins. As sHsps are still poorly studied in B. emersonii and in fungi overall, the aim of this work was to carry out a in-depth characterization of sHsps during B. emersonni life cycle, as well as in response to thermal stress. We verified a strong induction of the hsp17 gene in cells exposed to heat shock both in germination and sporulation stages, and that Hsp17 protein levels show the same pattern of variation of its mRNA. Unlike hsp17 and hsp30, hsp16 gene is not significantly induced during heat shock, in germination or sporulation cells. However, at normal temperatures, the hsp16 gene presents high mRNA levels in sporulation cells, whereas the hsp30 gene presents high mRNA levels in germination cells. Interestingly, heat shock mRNA levels for hsp17 and hsp30 genes are 10 times higher in germination cells than in sporulation cells. Thus, our data show that the expression of these sHsp genes is quite distinct, both under normal temperature as during heat shock.


Assuntos
Blastocladiella , Proteínas de Choque Térmico Pequenas , Estresse Fisiológico , Blastocladiella/genética , Proteínas de Choque Térmico Pequenas/genética , Resposta ao Choque Térmico/genética , RNA Mensageiro/genética , Estresse Fisiológico/genética
5.
Fungal Biol ; 123(1): 59-65, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30654958

RESUMO

Blastocladiella emersonii is an early diverging fungus of the phylum Blastocladiomycota. During the life cycle of the fungus, mitochondrial morphology changes significantly, from a fragmented form in sessile vegetative cells to a fused network in motile zoospores. In this study, we visualize these morphological changes using a mitochondrial fluorescent probe and show that the respiratory capacity in zoospores is much higher than in vegetative cells, suggesting that mitochondrial morphology could be related to the differences in oxygen consumption. While studying the respiratory chain of the fungus, we observed an antimycin A and cyanide-insensitive, salicylhydroxamic (SHAM)-sensitive respiratory activity, indicative of a mitochondrial alternative oxidase (AOX) activity. The presence of AOX was confirmed by the finding of a B. emersonii cDNA encoding a putative AOX, and by detection of AOX protein in immunoblots. Inhibition of AOX activity by SHAM was found to significantly alter the capacity of the fungus to grow and sporulate, indicating that AOX participates in life cycle control in B. emersonii.


Assuntos
Blastocladiella/crescimento & desenvolvimento , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Esporos Fúngicos/crescimento & desenvolvimento , Transporte de Elétrons , Oxirredução , Oxigênio/metabolismo
6.
Fungal Genet Biol ; 117: 43-53, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30030178

RESUMO

Blastocladiella emersonii is an interesting model for studding the evolution of cell differentiation in eukaryotic cell because of its taxonomic position towards the base of the fungal phylogenetic tree and because it undergoes radical morphological and biochemical changes throughout its life cycle. In this work, we biochemically characterized a high alkaline phosphotyrosine phosphatase activity present on the cell surface (ectophosphatase) of B. emersonii. The ectophosphatase activity was strongly inhibited at acidic pH values as well as by specific phosphatase inhibitors, such as sodium orthovanadate and bpv-PHEN. In addition, the enzyme activity was modulated by the extracellular concentration of inorganic phosphate (Pi) present in both reaction mixture and culture medium. Phosphotyrosine was hydrolysed at the same extent of its analog, p-NPP, while the hydrolysis of phosphothreonine was 2-fold lower, suggesting that a phosphotyrosine ectophosphatase activity is present on the cell surface of B. emersonii. The ectophosphatase activity was also strongly inhibited by EGTA, indicating the participation of Ca2+ ions on catalysis. The hydrolysis of p-NPP was differentially regulated throughout the B. emersonii life cycle, suggesting that the ectophosphatase activity could be involved in cell differentiation processes. In support of this, the addition of bpv-PHEN or vanadate at the beginning of germination inhibited the differentiation of zoospores to germ cells, compared to control or tartrate-treated cells. On the other hand, if the inhibitors are added 15 or 30 min after initiation of germination the inhibitory effect on zoospore germination decreases significantly, suggesting that the phosphotyrosine ectophosphatase activity is important at the first minutes of germination. The addition of vanadate, molybdate and bpv-PHEN during vegetative growth inhibited the enlargement of the cells compared to control or tartrate-treated cells. Finally, vanadate or bpv-PHEN added during sporulation strongly inhibited zoospore biogenesis, indicating an important role of such ectophosphatases in this differentiation process. Taken together, these data show the existence of a high alkaline ectophosphotyrosine phosphatase activity in B. emersonii that is probably tied to cell differentiation processes of the fungus.


Assuntos
Blastocladiella/genética , Diferenciação Celular/genética , Filogenia , Esporos Fúngicos/genética , Blastocladiella/enzimologia , Membrana Celular/enzimologia , Membrana Celular/genética , Proteínas Fúngicas , Fosfatos/metabolismo , Monoéster Fosfórico Hidrolases , Esporos Fúngicos/enzimologia
7.
Fungal Genet Biol ; 115: 20-32, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29627365

RESUMO

The model yeast Saccharomyces cerevisiae elicits a transcriptional response to phosphate (Pi) depletion. To determine the origins of the phosphate response (PHO) system, we bioinformatically identified putative PHO components in the predicted proteomes of diverse fungi. Our results suggest that the PHO system is ancient; however, components have been expanded or lost in different fungal lineages. To show that a similar physiological response is present in deeply-diverging fungi we examined the transcriptional and physiological response of PHO genes to Pi depletion in the blastocladiomycete Blastocladiella emersonii. Our physiological experiments indicate that B. emersonii relies solely on high-affinity Na+-independent Pho84-like transporters. In response to Pi depletion, BePho84 paralogues were 4-8-fold transcriptionally upregulated, whereas several other PHO homologues like phosphatases and vacuolar transporter chaperone (VTC) complex components show 2-3-fold transcriptional upregulation. Since Pi has been shown to be important during the development of B. emersonii, we sought to determine if PHO genes are differentially regulated at different lifecycle stages. We demonstrate that a similar set of PHO transporters and phosphatases are upregulated at key points during B. emersonii development. Surprisingly, some genes upregulated during Pi depletion, including VTC components, are repressed at these key stages of development indicating that PHO genes are regulated by different pathways in different developmental and environmental situations. Overall, our findings indicate that a complex PHO network existed in the ancient branches of the fungi, persists in diverse extant fungi, and that this ancient network is likely to be involved in development and cell cycle regulation.


Assuntos
Blastocladiella/genética , Sequência Conservada/genética , Fosfatos/metabolismo , Saccharomyces cerevisiae/genética , Blastocladiella/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Homeostase/genética , Proteoma/genética , Proteoma/metabolismo , Simportadores de Próton-Fosfato/genética , Simportadores de Próton-Fosfato/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Transdução de Sinais , Esporos Fúngicos
8.
J Biol Chem ; 292(52): 21578-21589, 2017 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-29118188

RESUMO

RhoGC is a fusion protein from the aquatic fungus Blastocladiella emersonii, combining a type I rhodopsin domain with a guanylyl cyclase domain. It has generated excitement as an optogenetics tool for the manipulation of cyclic nucleotide signaling pathways. To investigate the regulation of the cyclase activity, we isolated the guanylyl cyclase domain from Escherichia coli with (GCwCCRho) and without (GCRho) the coiled-coil linker. Both constructs were constitutively active but were monomeric as determined by size-exclusion chromatography and analytical ultracentrifugation, whereas other class III nucleotidyl cyclases are functional dimers. We also observed that crystals of GCRho have only a monomer in an asymmetric unit. Dimers formed when crystals were grown in the presence of the non-cyclizable substrate analog 2',3'-dideoxyguanosine-5'-triphosphate, MnCl2, and tartrate, but their quaternary structure did not conform to the canonical pairing expected for class III enzymes. Moreover, the structure contained a disulfide bond formed with an active-site Cys residue required for activity. We consider it unlikely that the disulfide would form under intracellular reducing conditions, raising the possibility that this unusual dimer might have a biologically relevant role in the regulation of full-length RhoGC. Although we did not observe it with direct methods, a functional dimer was identified as the active state by following the dependence of activity on total enzyme concentration. The low affinity observed for GCRho monomers is unusual for this enzyme class and suggests that dimer formation may contribute to light activation of the full-length protein.


Assuntos
Guanilato Ciclase/metabolismo , Optogenética/métodos , Rodopsina/metabolismo , Sequência de Aminoácidos , Blastocladiella/metabolismo , Domínio Catalítico , GMP Cíclico/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Nucleotídeos Cíclicos/metabolismo , Domínios Proteicos , Transdução de Sinais/fisiologia
9.
Nat Commun ; 6: 8046, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26345128

RESUMO

Cyclic GMP (cGMP) signalling regulates multiple biological functions through activation of protein kinase G and cyclic nucleotide-gated (CNG) channels. In sensory neurons, cGMP permits signal modulation, amplification and encoding, before depolarization. Here we implement a guanylyl cyclase rhodopsin from Blastocladiella emersonii as a new optogenetic tool (BeCyclOp), enabling rapid light-triggered cGMP increase in heterologous cells (Xenopus oocytes, HEK293T cells) and in Caenorhabditis elegans. Among five different fungal CyclOps, exhibiting unusual eight transmembrane topologies and cytosolic N-termini, BeCyclOp is the superior optogenetic tool (light/dark activity ratio: 5,000; no cAMP production; turnover (20 °C) ∼17 cGMP s(-1)). Via co-expressed CNG channels (OLF in oocytes, TAX-2/4 in C. elegans muscle), BeCyclOp photoactivation induces a rapid conductance increase and depolarization at very low light intensities. In O2/CO2 sensory neurons of C. elegans, BeCyclOp activation evokes behavioural responses consistent with their normal sensory function. BeCyclOp therefore enables precise and rapid optogenetic manipulation of cGMP levels in cells and animals.


Assuntos
GMP Cíclico/metabolismo , Guanilato Ciclase/metabolismo , Luz , Optogenética/métodos , Rodopsina/metabolismo , Animais , Blastocladiella , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Dióxido de Carbono , Células Quimiorreceptoras/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Células HEK293 , Humanos , Canais Iônicos/metabolismo , Microscopia de Fluorescência , Oócitos/metabolismo , Opsinas/metabolismo , Imagem Óptica , Oxigênio , Técnicas de Patch-Clamp , Xenopus
10.
Sci Signal ; 8(389): rs8, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26268609

RESUMO

Blastocladiomycota fungi form motile zoospores that are guided by sensory photoreceptors to areas of optimal light conditions. We showed that the microbial rhodopsin of Blastocladiella emersonii is a rhodopsin-guanylyl cyclase (RhGC), a member of a previously uncharacterized rhodopsin class of light-activated enzymes that generate the second messenger cyclic guanosine monophosphate (cGMP). Upon application of a short light flash, recombinant RhGC converted within 8 ms into a signaling state with blue-shifted absorption from which the dark state recovered within 100 ms. When expressed in Xenopus oocytes, Chinese hamster ovary cells, or mammalian neurons, RhGC generated cGMP in response to green light in a light dose-dependent manner on a subsecond time scale. Thus, we propose RhGC as a versatile tool for the optogenetic analysis of cGMP-dependent signaling processes in cell biology and the neurosciences.


Assuntos
Blastocladiella/enzimologia , GMP Cíclico/metabolismo , Proteínas Fúngicas/metabolismo , Guanilato Ciclase/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Animais , Blastocladiella/genética , Células CHO , Cricetinae , Cricetulus , GMP Cíclico/genética , Proteínas Fúngicas/genética , Guanilato Ciclase/genética , Rodopsina/genética , Rodopsina/metabolismo , Xenopus laevis
11.
Curr Biol ; 24(11): 1234-40, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24835457

RESUMO

Sensing light is the fundamental property of visual systems, with vision in animals being based almost exclusively on opsin photopigments [1]. Rhodopsin also acts as a photoreceptor linked to phototaxis in green algae [2, 3] and has been implicated by chemical means as a light sensor in the flagellated swimming zoospores of the fungus Allomyces reticulatus [4]; however, the signaling mechanism in these fungi remains unknown. Here we use a combination of genome sequencing and molecular inhibition experiments with light-sensing phenotype studies to examine the signaling pathway involved in visual perception in the closely related fungus Blastocladiella emersonii. Our data show that in these fungi, light perception is accomplished by the function of a novel gene fusion (BeGC1) of a type I (microbial) rhodopsin domain and guanylyl cyclase catalytic domain. Photobleaching of rhodopsin function prevents accumulation of cGMP levels and phototaxis of fungal zoospores exposed to green light, whereas inhibition of guanylyl cyclase activity negatively affects fungal phototaxis. Immunofluorescence microscopy localizes the BeGC1 protein to the external surface of the zoospore eyespot positioned close to the base of the swimming flagellum [4, 5], demonstrating this is a photoreceptive organelle composed of lipid droplets. Taken together, these data indicate that Blastocladiomycota fungi have a cGMP signaling pathway involved in phototaxis similar to the vertebrate vision-signaling cascade but composed of protein domain components arranged as a novel gene fusion architecture and of distant evolutionary ancestry to type II rhodopsins of animals.


Assuntos
Blastocladiella/fisiologia , Proteínas Fúngicas/genética , Guanilato Ciclase/genética , Luz , Rodopsina/genética , Transdução de Sinais , Sequência de Aminoácidos , Sequência de Bases , Blastocladiella/genética , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , Proteínas Fúngicas/metabolismo , Fusão Gênica , Guanilato Ciclase/metabolismo , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Rodopsina/metabolismo , Alinhamento de Sequência , Percepção Visual
12.
Biochim Biophys Acta ; 1834(12): 2823-31, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24157662

RESUMO

Centrins are calcium-binding proteins associated with microtubules organizing centers. Members of two divergent subfamilies of centrins were found in the aquatic fungus Blastocladiella emersonii, contrasting with the occurrence of only one member known for the better explored terrestrial fungi. BeCen1 shows greatest identity with human centrins HsCen1, HsCen2 and green algae centrin CrCenp, while BeCen3 records largest identity with human centrin HsCen3 and yeast centrin Cdc31p. Following the discovery of this unique feature, BeCen1 and BeCen3 centrins were produced to study whether these proteins had distinct features upon calcium binding. Circular dichroism showed opposite calcium binding effects on the α-helix arrangement of the secondary structure. The spectra indicated a decrease in α-helix signal for holo-BeCen1 contrasting with an increase for holo-BeCen3. In addition, only BeCen1 refolds after being de-natured. The fluorescence emission of the hydrophobic probe ANS increases for both proteins likely due to hydrophobic exposure, however, only BeCen1 presents a clear blue shift when calcium is added. ITC experiments identified four calcium binding sites for both proteins. In contrast to calcium binding to BeCen1, which is mainly endothermic, binding to BeCen3 is mainly exothermic. Light-scattering evidenced the formation of large particles in solution for BeCen1 and BeCen3 at temperatures above 30°C and 40°C, respectively. Atomic force microscopy confirmed the presence of supramolecular structures, which differ in the compactness and branching degree. Binding of calcium leads to different structural changes in BeCen1 and BeCen3 and the thermodynamic characteristics of the interaction also differ.


Assuntos
Blastocladiella/química , Cálcio/química , Proteínas Fúngicas/química , Dobramento de Proteína , Combinação Trimetoprima e Sulfametoxazol/química , Blastocladiella/metabolismo , Cálcio/metabolismo , Dicroísmo Circular , Proteínas Fúngicas/metabolismo , Humanos , Microscopia de Força Atômica , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína , Termodinâmica , Combinação Trimetoprima e Sulfametoxazol/metabolismo
13.
Can J Microbiol ; 58(9): 1104-11, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22913304

RESUMO

The cell cycle is controlled by numerous mechanisms that ensure correct cell division. If growth is not possible, cells may eventually promote autophagy, differentiation, or apoptosis. Microorganisms interrupt their growth and differentiate under general nutrient limitation. We analyzed the effects of phosphate limitation on growth and sporulation in the chytridiomycete Blastocladiella emersonii using kinetic data, phase-contrast, and laser confocal microscopy. Under phosphate limitation, zoospores germinated and subsequently formed 2-4 spores, regardless of the nutritional content of the medium. The removal of phosphate at any time during growth induced sporulation of vegetative cells. If phosphate was later added to the same cultures, growth was restored if the cells were not yet committed to sporulation. The cycles of addition and withdrawal of phosphate from growth medium resulted in cycles of germination-growth, germination-sporulation, or germination-growth-sporulation. These results show that phosphate limitation is sufficient to interrupt cell growth and to induce complete sporulation in B. emersonii. We concluded that the determination of growth or sporulation in this microorganism is linked to phosphate availability when other nutrients are not limiting. This result provides a new tool for the dissection of nutrient-energy and signal pathways in cell growth and differentiation.


Assuntos
Blastocladiella/efeitos dos fármacos , Blastocladiella/fisiologia , Fosfatos/farmacologia , Blastocladiella/genética , Blastocladiella/metabolismo , Fosfatos/metabolismo , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/fisiologia
14.
Fungal Genet Biol ; 48(8): 806-11, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21396477

RESUMO

Agrobacterium tumefaciens is widely used for plant DNA transformation and more recently, has also been used to transform yeast, filamentous fungi and even human cells. Using this technique, we developed the first transformation protocol for the saprobic aquatic fungus Blastocladiella emersonii, a Blastocladiomycete localized at the base of fungal phylogenetic tree, which has been shown as a promising and interesting model of study of cellular function and differentiation. We constructed binary T-DNA vectors containing hygromycin phosphotransferase (hph) or enhanced green fluorescent protein (egfp) genes, under the control of Aspergillus nidulans trpC promoter and terminator sequences. 24 h of co-cultivation in induction medium (IM) agar plates, followed by transfer to PYG-agar plates containing cefotaxim to kill Agrobacterium tumefsciens and hygromycin to select transformants, resulted in growth and sporulation of resistant transformants. Genomic DNA from the pool o resistant zoospores were shown to contain T-DNA insertion as evidenced by PCR amplification of hph gene. Using a similar protocol we could also evidence the expression of enhanced green fluorescent protein (EGFP) in zoospores derived from transformed cells. This protocol can also open new perspectives for other non-transformable closely related fungi, like the Chytridiomycete class.


Assuntos
Agrobacterium tumefaciens/genética , Blastocladiella/genética , Transformação Genética , Agrobacterium tumefaciens/crescimento & desenvolvimento , Blastocladiella/efeitos dos fármacos , Blastocladiella/crescimento & desenvolvimento , DNA Bacteriano/genética , Resistência a Medicamentos , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Higromicina B/farmacologia , Microscopia Confocal , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Reação em Cadeia da Polimerase , Microbiologia da Água
15.
Eukaryot Cell ; 9(6): 915-25, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20418381

RESUMO

Global gene expression analysis was carried out with Blastocladiella emersonii cells subjected to oxygen deprivation (hypoxia) using cDNA microarrays. In experiments of gradual hypoxia (gradual decrease in dissolved oxygen) and direct hypoxia (direct decrease in dissolved oxygen), about 650 differentially expressed genes were observed. A total of 534 genes were affected directly or indirectly by oxygen availability, as they showed recovery to normal expression levels or a tendency to recover when cells were reoxygenated. In addition to modulating many genes with no putative assigned function, B. emersonii cells respond to hypoxia by readjusting the expression levels of genes responsible for energy production and consumption. At least transcriptionally, this fungus seems to favor anaerobic metabolism through the upregulation of genes encoding glycolytic enzymes and lactate dehydrogenase and the downregulation of most genes coding for tricarboxylic acid (TCA) cycle enzymes. Furthermore, genes involved in energy-costly processes, like protein synthesis, amino acid biosynthesis, protein folding, and transport, had their expression profiles predominantly downregulated during oxygen deprivation, indicating an energy-saving effort. Data also revealed similarities between the transcriptional profiles of cells under hypoxia and under iron(II) deprivation, suggesting that Fe(2+) ion could have a role in oxygen sensing and/or response to hypoxia in B. emersonii. Additionally, treatment of fungal cells prior to hypoxia with the antibiotic geldanamycin, which negatively affects the stability of mammalian hypoxia transcription factor HIF-1alpha, caused a significant decrease in the levels of certain upregulated hypoxic genes.


Assuntos
Blastocladiella/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Blastocladiella/metabolismo , Hipóxia Celular , Proteínas Fúngicas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Oxigênio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima
16.
Eukaryot Cell ; 9(3): 415-23, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20038607

RESUMO

The Blastocladiella emersonii life cycle presents a number of drastic biochemical and morphological changes, mainly during two cell differentiation stages: germination and sporulation. To investigate the transcriptional changes taking place during the sporulation phase, which culminates with the production of the zoospores, motile cells responsible for the dispersal of the fungus, microarray experiments were performed. Among the 3,773 distinct genes investigated, a total of 1,207 were classified as differentially expressed, relative to time zero of sporulation, at at least one of the time points analyzed. These results indicate that accurate transcriptional control takes place during sporulation, as well as indicating the necessity for distinct molecular functions throughout this differentiation process. The main functional categories overrepresented among upregulated genes were those involving the microtubule, the cytoskeleton, signal transduction involving Ca(2+), and chromosome organization. On the other hand, protein biosynthesis, central carbon metabolism, and protein degradation were the most represented functional categories among downregulated genes. Gene expression changes were also analyzed in cells sporulating in the presence of subinhibitory concentrations of glucose or tryptophan. Data obtained revealed overexpression of microtubule and cytoskeleton transcripts in the presence of glucose, probably causing the shape and motility problems observed in the zoospores produced under this condition. In contrast, the presence of tryptophan during sporulation led to upregulation of genes involved in oxidative stress, proteolysis, and protein folding. These results indicate that distinct physiological pathways are involved in the inhibition of sporulation due to these two classes of nutrient sources.


Assuntos
Blastocladiella/fisiologia , Perfilação da Expressão Gênica , Esporos Fúngicos/fisiologia , Blastocladiella/citologia , Blastocladiella/efeitos dos fármacos , Metabolismo dos Carboidratos/genética , Análise por Conglomerados , Proteínas do Citoesqueleto/genética , Regulação para Baixo/genética , Proteínas Fúngicas/genética , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/fisiologia , Glucose/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo/genética , Biossíntese de Proteínas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esporos Fúngicos/efeitos dos fármacos , Fatores de Tempo , Triptofano/farmacologia , Regulação para Cima/genética
17.
BMC Microbiol ; 9: 231, 2009 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-19874600

RESUMO

BACKGROUND: Exposure of cells to environmental stress conditions can lead to the interruption of several intracellular processes, in particular those performed by macromolecular complexes such as the spliceosome. RESULTS: During nucleotide sequencing of cDNA libraries constructed using RNA isolated from B. emersonii cells submitted to heat shock and cadmium stress, a large number of ESTs with retained introns was observed. Among the 6,350 ESTs obtained through sequencing of stress cDNA libraries, 181 ESTs presented putative introns (2.9%), while sequencing of cDNA libraries from unstressed B. emersonii cells revealed only 0.2% of ESTs containing introns. These data indicate an enrichment of ESTs with introns in B. emersonii stress cDNA libraries. Among the 85 genes corresponding to the ESTs that retained introns, 19 showed more than one intron and three showed three introns, with intron length ranging from 55 to 333 nucleotides. Canonical splicing junctions were observed in most of these introns, junction sequences being very similar to those found in introns from genes previously characterized in B. emersonii, suggesting that inhibition of splicing during stress is apparently a random process. Confirming our observations, analyses of gpx3 and hsp70 mRNAs by Northern blot and S1 protection assays revealed a strong inhibition of intron splicing in cells submitted to cadmium stress. CONCLUSION: In conclusion, data indicate that environmental stresses, particularly cadmium treatment, inhibit intron processing in B. emersonii, revealing a new adaptive response to cellular exposure to this heavy metal.


Assuntos
Blastocladiella/genética , Cádmio/farmacologia , Splicing de RNA , Adaptação Fisiológica , Blastocladiella/efeitos dos fármacos , Blastocladiella/metabolismo , Etiquetas de Sequências Expressas , Regulação Fúngica da Expressão Gênica , Biblioteca Gênica , Genes Fúngicos , Proteínas de Choque Térmico HSP72/genética , Proteínas de Choque Térmico HSP72/metabolismo , Temperatura Alta , Íntrons , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Spliceossomos/genética , Spliceossomos/metabolismo , Estresse Fisiológico
18.
Fungal Genet Biol ; 46(8): 575-84, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19393757

RESUMO

The sporulation stage of the aquatic fungus Blastocladiella emersonii culminates with the formation and release to the medium of a number of zoospores, which are motile cells responsible for the dispersal of the fungus. The presence in the sporulation solution of 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a potent and selective inhibitor of nitric oxide-sensitive guanylyl cyclases, completely prevented biogenesis of the zoospores. In addition, this compound was able to significantly reduce cGMP levels, which increase drastically during late sporulation, suggesting the existence of a nitric oxide-dependent mechanism for cGMP synthesis. Furthermore, increased levels of nitric oxide-derived products were detected during sporulation by fluorescence assays using DAF-2 DA, whose signal was drastically reduced in the presence of the nitric oxide synthase inhibitor Nomega-Nitro-L-arginine methyl ester (L-NAME). These results were confirmed by quantitative chemiluminescent determination of the intracellular levels of nitric oxide-derived products. A putative nitric oxide synthase (NOS) activity was detected throughout sporulation, and this enzyme activity decreased significantly when L-NAME and 1-[2-(Trifluoromethyl)phenyl]imidazole (TRIM) were added to the assays. NOS assays carried out in the presence of EGTA showed decreased enzyme activity, suggesting the involvement of calcium ions in enzyme activation. Additionally, expressed sequence tags (ESTs) encoding putative guanylyl cyclases and a cGMP-phosphodiesterase were found in B. emersonii EST database (http://blasto.iq.usp.br), and the mRNA levels of the corresponding genes were observed to increase during sporulation. Altogether, data presented here revealed the presence and expression of guanylyl cyclase and cGMP phosphodiesterase genes in B. emersonii and provided evidence of a Ca(2+)-(*)NO-cGMP signaling pathway playing a role in zoospore biogenesis.


Assuntos
Blastocladiella/fisiologia , Cálcio/farmacologia , Ativadores de Enzimas/farmacologia , Óxido Nítrico/metabolismo , Transdução de Sinais , Esporos Fúngicos/crescimento & desenvolvimento , Sequência de Aminoácidos , GMP Cíclico/análise , Citosol/química , Inibidores Enzimáticos/farmacologia , Etiquetas de Sequências Expressas , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Guanilato Ciclase/antagonistas & inibidores , Guanilato Ciclase/genética , Dados de Sequência Molecular , Óxido Nítrico Sintase/metabolismo , Oxidiazóis/farmacologia , Quinoxalinas/farmacologia , Alinhamento de Sequência
19.
Eukaryot Cell ; 8(2): 170-80, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19098129

RESUMO

Blastocladiella emersonii is an aquatic fungus of the Chytridiomycete class. During germination, the zoospore, a motile nongrowing cell, goes through a cascade of morphological changes that culminates with its differentiation into the germling cell, capable of coenocytic vegetative growth. Transcriptome analyses of B. emersonii cells were carried out during germination induced under various environmental conditions. Microarray data analyzing 3,563 distinct B. emersonii genes revealed that 26% of them are differentially expressed during germination in nutrient medium at at least one of the time points investigated. Over 500 genes are upregulated during the time course of germination under those conditions, most being related to cell growth, including genes involved in protein biosynthesis, DNA transcription, energetic metabolism, carbohydrate and oligopeptide transport, and cell cycle control. On the other hand, several transcripts stored in the zoospores are downregulated during germination in nutrient medium, such as genes involved in signal transduction, amino acid transport, and chromosome organization. In addition, germination induced in the presence of nutrients was compared with that triggered either by adenine or potassium ions in inorganic salt solution. Several genes involved in cell growth, induced during germination in nutrient medium, do not show increased expression when B. emersonii zoospores germinate in inorganic solution, suggesting that nutrients exert a positive effect on gene transcription. The transcriptome data also revealed that most genes involved in cell signaling show the same expression pattern irrespective of the initial germination stimulus.


Assuntos
Blastocladiella/fisiologia , Perfilação da Expressão Gênica , Esporos Fúngicos/fisiologia , Blastocladiella/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais , Esporos Fúngicos/genética , Transcrição Gênica
20.
São Paulo; s.n; 2009. 140 p. ilus, tab, graf.
Tese em Português | LILACS | ID: lil-566895

RESUMO

Neste trabalho realizamos a análise das variações na expressão gênica global do fungo aquático Blastocladiella emersonii submetido ao estresse de carência de oxigênio (hipóxia), utilizando a técnica de microarranjos de cDNA em lâminas contendo 3773 genes distintos. Nos experimentos de hipóxia gradual (diminuição gradual da concentração de oxigênio dissolvido, seguido de reoxigenação) e hipóxia direta (diminuição direta da concentração de oxigênio dissolvido, seguido de reoxigenação) observamos que 650 genes foram diferencialmente expressos em pelo menos uma das condições de estresse e que 534 deles mostraram-se afetados (direta ou indiretamente) pela disponibilidade de oxigênio, uma vez que apresentaram recuperação (ou tendência à recuperação) da sua expressão aos níveis normais, quando as células foram reoxigenadas. Além de modular a expressão de diversos genes sem função conhecida, B. emersonii responde à hipóxia reajustando a expressão de genes responsáveis pela produção e consumo de energia. Pelo menos transcricionalmente, este fungo favorece o metabolismo anaeróbico, através da indução de genes que codificam enzimas da via glicolítica e lactato desidrogenase, ao passo que no ciclo do ácido cítrico, a maioria dos genes encontram-se reprimidos ou não sofrem alteração na expressão. Processos dispendiosos em energia como síntese protéica, metabolismo de aminoácidos, enovelamento de proteínas e transporte por membrana apresentaram perfis predominantemente de repressão gênica quando em carência de oxigênio. Ainda utilizando a técnica de microarranjos, mostramos semelhanças entre os perfis transcricionais nos experimentos hipóxia e de carência de Fe2+ (tratamento com quelante de Fe2+ 2,2´-dipyridyl) sugerem que estes estresses estão de alguma forma relacionados, fornecendo bons indícios de que o íon Fe2+ possa ter um papel importante no mecanismo sensor de oxigênio e/ou de resposta a hipóxia em B. emersonii. Além disso, o tratamento prévio de células...


In this work we analyzed global gene expression changes in the aquatic fungus Blastocladiella emersonii submitted to oxygen deprivation (hypoxia), using cDNA microarrays containing 3,773 distinct genes. In gradual hypoxia (gradual decrease in dissolved oxygen concentration, followed by reoxygenation) and direct hypoxia (direct decrease of dissolved oxygen concentration, followed by reoxygenation) we observed 650 differentially expressed genes in at least one of the stress conditions tested, 534 of them being affected (directly or indirectly) by oxygen availability, since they showed recovery of normal expression levels or a tendency to recover, when cells were reoxygenated. Besides modulating many genes with no previously assigned function, B. emersonii responds to hypoxia by readjusting the expression levels of genes responsible for energy production and consumption. At least transcriptionally, this fungus seems to favour anaerobic metabolism through the induction of genes encoding glycolytic enzymes and lactate dehydrogenase, while in the TCA-cycle, most genes were repressed or unchanged. Energy-costly processes like protein synthesis, amino acid metabolism, protein folding and transport had their gene expression profiles predominantly repressed during oxygen deprivation. Microarray experiments also showed similarities between the transcriptional profile of genes in hypoxia and iron (II) deprivation (treatment with the iron (II) chelator 2,2/'-dipyridyl), suggesting that these stresses are somehow related, giving good evidence that Fe2+ ion could have a role in the mechanism of oxygen sensing and/or response to hypoxia in B. emersonii. Furthermore, pretreatment of cells subjected to hypoxia with the antibiotic geldanamycin, a known inhibitor of the heat shock protein HSP90, caused a significant decrease in the induction of certain hypoxic genes, indicating that this fungus could have a mechanism similar to that of the mammalian hypoxia transcription factor...


Assuntos
Blastocladiella/genética , Fungos Aquáticos/métodos , Expressão Gênica , Oxigênio , Bioquímica , Biologia Molecular/métodos , DNA Fúngico/química , Hipóxia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...